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This study was motivated by investigations of the dynamic characteristics of high-speed rotors in hydrostatic bearings, conducted 
at the University of Poitiers, France. The model is defined by linear ordinary differential equations with undetermined coefficients 
(reduced masses and damping and elasticity coefficients, which determine the action of a fluid film of an annular seal on the 
rotor). An identification system of algebraic equations is set up based on tests of the system. By a test we mean the excitation 
(under certain initial conditions) of a special form of vibratory mode of motion in the system being modelled, by the application 
of external forces. Measurements are made of the positions of the rotor at each instant of time over a given time interval, and 
of the forces exerted by the fluid on the rotor. For the identification system to be solvable, it is necessary, in particular, for its 
determinant to be non-zero. Analytical expressions are obtained for the determinant of the identification system for a model 
with an arbitrary number of degrees of freedom and for special cases of models with one and two degrees of freedom, with and 
without damping. A time-domain method of identification is employed. The determinant is evaluated for sinusoidal test vibrations. 
Such motions correspond to forced or natural vibrations of the system being modelled. In the simplest cases the determinant 
can be factorized, which leads to simple rules for choosing tests: the minimum number of tests necessary for identification equals 
twice the number of degrees of freedom in the model; not all the frequencies of the vibrations should be the same; if the frequencies 
are the same, the corresponding vectors of vibration amplitudes must be linearly independent in the configuration space. © 2005 
Elsevier Ltd. All rights reserved. 

Two basic methods of identification, based on two methods of measurement, have been considered in 
the literature. The first, the frequency-domain method, is based on Fourier transforms and 
measurement of the frequency characteristics of steady forced vibrations of the system being modelled 
[1, 2]. The second, the time-domain method, which has recently seen considerable progress, relies on 
new high-precision measurement equipment, which is capable of measuring the parameters of motion 
as practically continuous functions of time [3-6]. A recent review of identification methods [7], which 
is far from complete, devotes much attention, apart from the mathematical aspects of the approach, 
to methods for exciting test vibrations. It has been shown [8] that increasing the number of excitation 
frequencies reduces the effect of noise. A frequency-domain method [9], based on harmonic test 
vibrations [10] and measurement of the spectral energy density of the vibrations on a special test rig 
[11], has been used to identify a model of high-speed hybrid bearings [11]. Most of the identification 
methods are frequency-domain methods. Recent publications, however, have shown that time-domain 
m e t h o d s  a r e  s i m p l e r  and  m o r e  e f fec t ive .  M o s t  i n t e r e s t i n g  in this  r e g a r d  a r e  p a p e r s  [12, 13] in w h i c h  
t h e  t i m e - d o m a i n  a p p r o a c h  is c o m b i n e d  w i t h  t he  m e t h o d  o f  leas t  s q u a r e s  a n d  it is s h o w n  tha t  t h e  
n e c e s s a r y  n u m b e r  o f  tes ts  is less t h a n  in f r e q u e n c y - d o m a i n  m e t h o d s .  

1. I L L U S T R A T I O N  O F  T H E  I D E N T I F I C A T I O N  M E T H O D  F O R  
A S Y S T E M  O F  F I R S T - O R D E R  L I N E A R  E Q U A T I O N S  

To simplify the presentation of the time-domain method of identification, we will first consider a canonical 
system of first-order differential equations 
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= e z  (1.1) 

where P is an n x n matrix of unknown coefficients, z is an n-dimensional phase column-vector (the 
vector of deviations of the generalized coordinates and velocities from the values in steady motion) 
and t is the time; a dot denotes differentiation with respect to t. 

Present-day measuring equipment yields numerical values of the generalized coordinates and applied 
forces as continuous functions of time. Suppose s tests have been performed, producing s 
measurements of the phase vector zi(t) ,  t ~ [0, Ti] (i = 1 . . . .  , s).  To determine the elements of the matrix 
P one uses the method of least squares with the functional 

s Ti 
1 

S ( P )  = ~ 2 f II ~ i ( / ) -  ez,(t)ll 2dt = ~ t r ( P r P z ) - t r ( P F r )  + " ' "  

i=1o 
(1.2) 

s Ti S Ti 

Z = ~ .  I z i z rd t ,  F = ~ ,  f Zi£Tidt (1.3) 
i= lo  i = l o  

where the dots stand for terms independent of P, the superscript T denotes transposition, and the symbols 
[l' II denote the Euclidean norm of a vector. In what follows the symbols [l" I1 will be used to "frame" 
matrices, specified by their numerical or block elements. The condition for a minimum 

gradS(P) = P Z - F  = 0 

yields a linear identification equation for determining the matrix P: 

P Z  = F (1.4) 

Note that this equation can be obtained by tensor multiplication of the equation of motion (1.1) by 
zi, integration with respect to t ~ [0, Ti] and summation over all the tests. For the equation to be solvable, 
the determinant of the matrix Z must not vanish. Starting from definition (1.3) of Z, we can conclude 
only that it is symmetric and non-negative. The latter conclusion follows from the relation 

s Ti 
T 2 

y r z y  = ~ .  I ( z i Y )  d t > _ O ~ d e t Z > O  

i=10 

Let us evaluate the determinant detZ, using the natural vibrations of the system as tests 

Zi(t)  = ciexp)~it ,  t ~ [0, Ti], i = 1 . . . . .  s (1.5) 

where ~/and c i are the eigenvalues and complex phase eigenvectors of system (1.1). Then the matrix 
Z is 

2 T 
Z = ~., bticici = B B r ;  B = []}.tlc I . . . .  gsC,lt, bti = exp2~. i td t  

i =  1 V O  

The indeterminacy in the value of ~I i is unimportant, since the expression for detZ involves only bt 2. If 
s < n, the matrix B may be completed by n - s columns of zeroes to a square matrix B: 

Z = ~ r ;  ~ = Hi.t,c I . . . . .  }.tsC s, 0 . . . . .  OI] ~ detZ = (detB) 2 = 0 (1.6) 

By last relation in (1.6), a necessary condition for Z to be non-singular is that s > n. In what follows, 
we will confine our attention to the case s = n. Then 

2 2 2 
d e t Z  = C = IIc1 . . . . .  c lf 
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Thus, a necessary condition for the identification system to be non-degenerate is that the vectors of 
complex phase amplitudes q ,  . . . ,  Cn should be linearly independent. By virtue of the continuity of detZ 
as a function of the test vibration parameters (1.5), the identification system (1.4) will remain non- 
degenerate even if the test vibrations are only close to the natural ones. 

2. THE SYSTEM OF S E C O N D - O R D E R  E Q U A T I O N S  W I T H O U T  
D A M P I N G  

A disadvantage of the approach described in the previous section (apart from the difficulty of working 
with complex amplitudes) is that it is impossible to consider external applied forces and forced vibrations 
of the system. The term corresponding to an applied force, if simply added on the right of Eq. (1.1), 
would have the sense of a force referred to the reduced mass. Such a force cannot be measured by 
instruments, since the reduced mass is not known in advance. 

Let us consider the equation of vibrations of a linear mechanical system with n degrees of freedom 
and explicitly written reduced mass, "damping" and "elasticity coefficients". 

m±'+ cx + kx = f ( t )  (2.1) 

Equation (2.1) with c = 0 may be rewritten as 

ou = f ( , ) :  u = .T, xTtl T, O = Jim, a:ll (2.2) 

where a compound 2n-vector u and compound n x 2n matrix Q have been introduced. 
Let us consider s tests ui(t) ,  t E [0,  ri] ( i  = 1, . . .  , s ) .  A s  in the previous section, the identification 

equations are obtained by tensor multiplication of Eq. (2.2) by ui, integration with respect to t e [0, Ti] 
and summation over i = 1, . . . ,  s 

s Ti s Ti 

Q U  = G; U = ~., I uiurdt,  G : ~ ,  S f iuTd t  (2.3) 
i = 1 o  i = l o  

where the 2n x 2n matrix U is analogous to the matrix Z of the previous section and is symmetric and 
non-negative. To prove that it is non-singular, we must express the structure of the tests more specifically. 
Now, as tests, besides natural vibrations, one must consider forced vibrations xi = aicos(olit -t- qli) at 
frequencies mi and real n-dimensional configuration vectors of amplitudes a i 

bli --'-- bic°s(O)it + (Pi ) ,  bi = -O~i2aiT, aiT T, i = 1, ..., S (2.4) 

After substituting expressions (2.4) into Eq. (2.3), we get 

s 

u 
= bibiYi = = ii ,b  . . . . .  g i  = i =  

i = l  

Ti 

S 2 Yi = cos (mit + %)d t  = (2m/T i + s in2(miT  i + %) - sin2%) 
0 

, . . . ,  S 

(2.5) 

Using formulae (2.5), as in the previous section, we can convince ourselves that detU = 0 if s < 2n. 
A necessary condit ionfor U to be non-singular is that s >__ 2n and that the rank of B be 2n. If s = 2n, 
we have detU = (detB), and a necessary condition for U to be non-singular is that 

detB = g,. . .g2ndetB;e0, B = lib1 . . . . .  b2nll (2.6) 

or that all the extended amplitude 2n-vectors b i are linearly independent. This condition cannot be 
satisfied if the vibration frequencies fD i are the same for all tests, since then the matrix B will be identical 
r o w s .  
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Using Laplace 's  formula,  we expand detB in terms of  the minors of  its first n rows 

detB = Y~Ni~ ..... i 0)i21...0)i2 n 

N i  L ..... i, = ( - - 1 ) n + l +  2+  ... + n +  i, + .  +,Odetjlai, . . . .  . ai ,  l[detl taj , ,  . . . ,  a j ,  i I (2.7) 

{i 1 . . . . .  i n } c { 1  . . . . .  2n}, { J l  . . . . .  J ,}  = {1 . . . . .  2n}\{i  1 . . . . .  in} 

where the symbol Z stands for summation over the C~ combinations of subscript values il ..... in (arranged 
in increasing order)  in the natural  number  series {1 . . . .  ,2n} ,  and j l  . . . . .  Jn denotes  the sequence of  
subscripts (in increasing order)  that complete  the sequence il, . . . ,  i,, to the set {1 . . . .  ,2n}. Remember ing 
that 

( _ 1 )  n + l + 2 + + n  = ( _ 1 )  In/21, ( _ l ) q + + i . + J ~ + + J .  = ( _ 1 )  l + + 2 n  = ( - 1 )  n 

N j ,  ..... j .  = ( - 1 ) n N q  ..... i. 

where  [n/2] is the integer par t  of  the number  n / 2 ,  we can rewrite formula (2.7) as 

2 2 + (_l)n0)y. . .  2 detB = Z'Ni~ ..... i .{  0 ) i , " '0 ) io  0)).} 
(2.8) 

N i  l .. . . .  i. = ( - 1 )  [n/Z]+ i~+ " + i"detllai,  . . . . .  ai , , l ldetl laj , ,  " ' .  ajoll 

where  ~ '  stands for summat ion over  half  the combinations of  subscripts il . . . . .  in (omitting mutually 
complementa ry  combinations).  As verified by the M A P L E  system, in an exper iment  pe r fo rmed  up to 
an including n = 4, formula  (2.8) may be rewrit ten as 

detB = 1 2 2 2 2 n 
n ! 2  ~ _ 1Z 'N i ,  . . . . .  i , (0)i l  + "'" + 0)i, - 0)j, - ""  - 0 )L)  (2.9) 

In the case of a system with one degree of f reedom (n = 1, s = 2), formulae (2.8) and (2.9) are identical, 
and the expression for de tU becomes 

2 2 . 2 2. 2 
detU = gt72(detB) 2 = a l a 2 ~ / l ' } " 2 ( 0 )  1 - 0 ) 2 )  

Hence  it follows that for  systems with one degree of  f reedom the vibration frequencies in the two tests 
must be different.  

In the case of  a system with two degrees of  f reedom (n = 2, s = 4), formula  (2.9) has the form 

1 2 2 2 2 2 
detB : ~Nl, 2(0)1 "t- 0)2 -- 0)3 -- 0)4) + 

1 2 2 2 9 2  1 2 2 2 2 2  
+ 2 N I , 3 ( 0 ) 1  + 0 ) 3 - 0 ) 2 - 0 " ) 4 )  + 2 N I , 4 ( 0 ) 1  + 0 ) 4 - 0 ) 2 - 0 ) 3 )  

(2.10) 

where  

1 
NI,  2 =  detlla,, azlldetlla3, a41 t 

1 1 
NI, 3 = -~detlla 1, a3ffdetl]a2, a411, N1,4 = ~detlla 1, a4]ldet/ta2, a311 

In particular, if there  are equal frequencies,  0)1 = 0)2 and 0)3 = 0)4, the expression for de tU becomes  

detU = "/1727374(detB) 2 = 

l -  2 2 2 2 
= - ~ 6 7 , Y 2 7 3 7 4 { d e t l l a l ,  a211detlla3, a 4 1 1 t m l - 0 ) 3 ) }  
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Thus, in the case of a model with two degrees of freedom without damping, the identification system 
will be non-degenerate, in particular, if 0)1 = 0)2 * 0)3 = 0)4 and the amplitude vectors al, a2 and a3, a4 
are non-collinear in pairs. 

In the case n = 2, s = 4, formula (2.8) becomes 

2 2 2 2 2 2 2 2 2 2 2 2 
detB 2NL 2(0)10)2 + 2N1, 4(0)10)4 + (2.11) = 0330)4) -I'- 2NI,3(0)J0)3 + c°20)4) + 0)20)3) 

For a simple derivation of formula (2.10) from formula (2.11), rewrite the latter in the form 

detB = w T p w ;  P = 

0 N1, 2 N1, 3 N1, 4 , 

N1, 2 0 N l ' 4  N I ' 3  W = 

NI,  3 N1, 4 0 N1, 2 

N1, 4 N1, 3 N1, 2 0 

2 
0)1 

2 
0) 2 

2 
0) 3 

2 
0)4 

The matrix P is symmetric, and consequently may be diagonalized by an orthogonal transformation. 
Since its trace is zero, the sum of its eigenvalues is zero. The eigenvalues and eigenvectors are 

)~1 = N 1 , 2 - N t , 3 - N I , 4  = 2N1 ,2 ,  Y1 = (1, 1 , - 1 , - 1 )  r 

~2 "= -NI ,2+N1,3 -N1 ,4  = 2N1 ,3 ,  Y2 = (1 , -1 ,  1 , -1)  r 

~'3 = - N 1 , 2 - N I , 3 + N 1 , 4  = 2N1,4, Y3 = ( 1 , - 1 , - 1 ,  1) r 

~4 = NI,2+N1,3+N1,4 = 0 ,  Y4 = (1, 1, 1, 1) r 

The sum N1, 2 -t- N1, 3 + N1, 4 corresponds in formula (2.6) to the determinant detB with equal rows 
and must therefore vanish. The vectors Y1, Y2, Y3 and Y4 have the same Euclidean norm 2. In principal 
axes, the matrix P may be reconstructed as 

1 YI Yrl + r r P = ~()~l )~eYeY2 + ~3YgY3 + )~4Y4YT4) = 

1 T T T 
= ~(NI,2Y2Y 2 + N1,3Y3Y3 + N1,4Y4Y 4) 

This immediately implies formula (2.10). 
We will now present a derivation of formula (2.11) from formula (2.10). Expanding the first square 

in formula (2.10), we group the terms as follows: 

2 2 2 2 2 2 2 2 2 
(0)1 + - = L + 4 (0 )1m2 + 0)2 -- 0)3 0)4) 0)30)4) 

4 ~ .  2 2 2 2 2 2 2 2 2 2 2 2 
n = 0)41 4-(04 -{-0) 4 + 0 ) 4 - Z { 0 ) 1 0 ) 2  +0)10)3  4"0)10)4 +0)2(-03 +0)20)4  +0)3(1-)4) 

The same term L will occur in the other two squares as well. Summation of the terms with the factor 
L gives zero, because N1, 2 -t- N1, 3 -t- N1, 4 =" 0. The second (explicitly written) term in the sum yields 
formula (2.11). 

3. T H E  S Y S T E M  OF S E C O N D - O R D E R  E Q U A T I O N S  W I T H  D A M P I N G  

We now return to the general equation (2.1) for vibrations of a linear mechanical system with n degrees 
of freedom. For a more convenient evaluation of the determinant, we will change the order of the terms 
in Eq. (2.1), introducing a compound 3n-vector v and a compound n x 3n matrix R, 

R o  = = IIZ, x f i l l  R = IIm, k, ell (3 .1)  
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Consider s tests vi(t), t ~ [0, Ti] (i -- 1 . . . . .  s). The identification equations for determining the matrix 
R are obtained by tensor multiplication of Eq. (3.1) by vi, integration with respect to t e [0, T/], and 
summation over i = 1, . . . ,  s 

S Ti  s Ti  

xl xf R V  = H; V = r i o  id t ,  H = f i v i d t  (3.2) 
i = 1 0  i = I 0  

where the 3n x 3n matrix V is analogous to the matrix U of the previous section and is symmetric and 
non-negative. To specify the structure of the tests in more detail; we putxi = aicos(o)i t + q)i), and then 

T 2 T T . 
1)i = --ai o)i C O S ( O ) / / +  (Pi), ai COS(f.0it + (Pi), - a i  o)isln(o)i  t + qli) T (3.3) 

After substituting expression (3.3) into Eq. (3.2), we get 

s 

v =  

i = I  

T 4 T 2 T 3 
aiai O')i Yi - a ia i  o)i "~i - a i a i  o)i O~i 

T 2 T T 
- a i a i  o)i ~ti aiai ~ti aiai o)io~i 

T 3 T T 2 
- a i a i  o)i O~i aiai o)iO~i aiai o)i 13i 

U 

T 
-Y'.aiaTo)~o~i ~ a i a  i o)io~ i 

T 3 
- ~ a i a i  O')i ~i 

~ a  iaTo)iOti 

D D  T 

(3.4) 

where 

D = ( o ) l V l a l  . . . . .  o)sVsa,), Vi = ~ i  

~i = 

T i 

I sin2(o)it + (Pi)dt = ~ i  (2o)iTi - sin2(o)iTi + q)i) + sin2q~i) 
o 

T i 

oti = f s i n ( o ) i t  + (Pi)cos(o)i t  + (Pi)dt = -~-~ i (  cos2 (o ) iT i  + (Di) - c o s 2 q ) i )  

o 

Note that the integrals '{i and 13i a r e  always positive and their expressions contain terms linear in Ti 
with positive coefficients, while the integral oq- is a bounded periodic function of Ti. Assuming that the 
positive numbers T/are sufficiently large and that s > 2n, we express detV as a polynomial in powers 
of % [3i. The maximum degree 3n will be that of the term detUdet (DDT); the degree of the remaining 
terms will be at most 3n - 2; det(DD r) ~ 0 if the matrix D is of rank n, which is always true when the 
matrix B is of rank 2n. 

Thus, for sufficiently long test times, the conditions for the matrix U to be non-singular will be sufficient 
conditions for the matrix V to be non-singular, hence also sufficient conditions for the identification 
system of equations to be non-degenerate. 

In the case of a system with one degree of freedom and damping, and with two tests, n = 1, s = 2, 
formula (3.4) becomes 

2 2 2 2 
2 2 . 2 2 . 2 ( a l o ) 1  - 2 a2o)2 2 

detV = ala2glg2(,o) l -°)2) l - ~  ([31Ti-cq) + --~-2 (~2],2 - (x2) 

The quantities 131]tl -- ~2 and 13272 - c~ 2 are always positive, and the only condition necessary for 
successful identification, as when there is no damping, is that the vibration frequencies in the tests should 
be different. 
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